FANDOM


Archivo:H-R diagram-ES.png

Se denomina secuencia principal a la región del diagrama de Hertzsprung-Russell en la que se encuentran la mayor parte de las estrellas. Las estrellas que se ubican en esta banda son llamadas estrellas de la secuencia principal. Las más frías de esta curva son las enanas rojas mientras que las que están más al extremo de altas temperaturas son las supermasivas gigantes azules. El diagrama H-R es un diagrama estadístico que muestra la temperatura efectiva de la estrellas en función de su luminosidad. Otras regiones del diagrama están ocupadas por estrellas gigantes de corta vida y evolución rápida o por enanas blancas muy estables.

Las estrellas se sitúan en esta región debido a que tanto el tipo espectral, que se puede relacionar con la temperatura, como la luminosidad de una estrella dependen de su masa (L \propto M^3). Pero esto es cierto solo a orden cero, es decir durante la etapa de fusión del hidrógeno.

La mayoría de las estrellas permanecen la mayor parte de su vida "activa" sobre la secuencia principal evolucionando lentamente en un proceso de contracción gravitatoria cuasiestático. La secuencia principal es, en realidad, una región difusa debido a la variedad de masas, a la presencia de compañeras cercanas, campos magnéticos, a la rotación y a indeterminaciones observacionales, tales como la distancia y correcta evaluación de luminosidad estelar. La composición química de las estrellas es, también uno de los factores más importantes a la hora de ubicarse una estrella en el diagrama. Existe, de hecho, toda una gama de estrellas pobres en metales que se desplazan a lo largo del diagrama distribuyéndose en grupos suficientemente diferenciados y que reciben el nombre de subenanas y subgigantes según si se trata de estrellas en la etapa de fusión del hidrógeno o de elementos más pesados respectivamente.

En ocasiones, los astrónomos hacen referencia a la secuencia principal de edad 0 o ZAMS (zero age main secuence). La ZAMS es una línea calculada a partir de modelos numéricos realizados por ordenador y que simulan el comportamiento de diferentes estrellas cuando comienzan a quemar el hidrógeno. La mayoría de estrellas ha abandonado ya la ZAMS porque ha transcurrido parte de su vida. Pero a medida que miramos las estrellas más masivas estas están más cerca ya que estas viven muy poco tiempo. Esto se puede observar en la menor dispersión de puntos en la zona superior izquierda del diagrama, es decir la que representa a los gigantes azules supermasivos.

El Sol es una estrella de la secuencia principal que ha permanecido durante 4.500 millones de años en esta estable secuencia y permanecerá otros 4.500 millones de años más dentro de ella. Cuando el suministro de hidrógeno en el núcleo finalice, el Sol comenzará a expandirse y su superficie se enfriará. Como resultado, se convertirá en una gigante roja.

En el caso de las estrellas de baja masa los conocimientos sobre su evolución de son puramente teóricos, porque sus secuencias principales duran más que la edad actual del universo, así que ninguna de las estrellas en este rango de masas ha evolucionado suficiente como para tener evidencias observacionales. Se cree que su evolución procederá como para las estrellas de masa mediana, a excepción de que la temperatura en su interior nunca se elevará lo suficiente como para llegar a la ignición del helio. El hidrógeno continuará quemándose en una capa, pero eventualmente se agotará. La estrella entonces simplemente se hará más y más fría, terminando después de unos 50.000 millones de años o más como una enana negra.

Datos de la secuencia principalEditar

Archivo:Estrellatipos.png

Esta tabla muestra los valores típicos de las estrellas a lo largo de la secuencia principal. La luminosidad (L), el radio (R), y la masa (M) se expresan en relación al Sol. Los valores actuales para una estrella pueden variar en torno a un 20-30%. El color de la columna del tipo espectral da una representación aproximada del color fotográfico de la estrella.

Tipo
espectral
Radio Masa Luminosidad Temperatura
R/RSol M/MSol L/LSol K
O2 19 120 2 000 000 49 000
O5 10 35 225 000 39 000
B0 8,0 17 40 000 29 000
B5 5,0 5,4 1 200 15 200
A0 3,6 2,8 100 9 600
A5 3,2 2,4 55 8 700
F0 2,7 1,85 18 7 200
F5 2,0 1,45 6,0 6 400
G0 1,24 1,12 1,24 6 000
G2 1,00 1,00 1,00 5 800
G5 0,88 0,90 0,64 5 500
K0 0,78 0,80 0,37 5 150
K5 0,60 0,60 0,15 4 450
M0 0,34 0,40 0,025 3 850
M5 0,18 0,12 0,004 3 200

La secuencia principal como fase evolutivaEditar

La secuencia principal es la fase en que una estrella quema hidrógeno en su núcleo mediante fusión nuclear. Una vez instalada en la secuencia principal la estrella se compone de un núcleo donde tiene lugar la fusión del hidrógeno al helio y un manto que transmite la energía generada hacia la superficie. La mayor parte de las estrellas pasan el 90% de su vida, aproximadamente, en la secuencia principal del diagrama de Hertzsprung-Russell. En esta fase las estrellas consumen su combustible nuclear de manera gradual pudiendo permanecer estables por periodos de tiempo de 2-3 millones de años, en el caso de las estrellas más grandes y calientes, a miles de millones de años si se trata de estrellas de tamaño medio como el Sol, o hasta decenas o incluso centenares de miles de millones de años en el caso de estrellas de poca masa como las enanas rojas. Lentamente, la cantidad de hidrógeno disponible en el núcleo disminuye, con lo que ésta ha de contraerse para aumentar su temperatura y poder detener su colapso gravitacional. Las temperaturas del núcleo estelar más elevadas permiten fusionar, progresivamente, nuevas capas de hidrógeno sin procesar. Por este motivo las estrellas aumentan su luminosidad a lo largo de la secuencia principal de forma paulatina y regular. Cuando el hidrógeno del núcleo finalmente se agota la estrella sufre unas rápidas transformaciones que la convierten en gigante roja. A lo largo de toda esta etapa solamente habrá procesado el 10% de su masa.

Reacciones nucleares en la secuencia principalEditar

En una estrella de secuencia principal distinguimos dos modos de quemar el hidrógeno del núcleo. Se podría pensar que la nucleosíntesis del hidrógeno en helio se realiza mediante el choque de cuatro protones. Pero este tipo de choques múltiples son mucho más improbables que las colisiones por parejas. Por eso la combustión se realiza mediante cadenas de reacciones que conducen al helio-4. Lo que determinará a través de qué cadena o ciclo quema su hidrógeno será la masa de la propia estrella, pues el valor de ésta determina las condiciones de presión y temperatura de su núcleo.

Cadenas PP ( M < 1,5 MSol ) Editar

Plantilla:AP

Las cadenas protón - protón se llaman así porque son aquel conjunto de reacciones que parten de la fusión de un ion de hidrógeno con otro igual, o lo que es lo mismo, de un protón con otro protón. Se distinguen tres cadenas distintas. La PPI, PPII y la PPIII. Cada una con una probabilidad de ocurrencia distinta según la temperatura del núcleo. La fusión del hidrógeno mediante las cadenas PP se da en todas las estrellas pero en las más masivas su contribución es mínima. Dicha reacción solo predomina hasta las 1,5 masas solares. Por debajo de las 0,08 masas solares no existe fusión del hidrógeno y tendremos una estrella abortada, es decir una enana marrón. En el diagrama que viene a continuación salen representadas las tres cadenas PP. También se citan los porcentajes de ocurrencia en el Sol y se indica el balance energético de cada reacción. Las proporciones de las tres cadenas varían según la temperatura.

PPI: 26.20MeV. 90% Dominante desde los 10 hasta los 14 MK (Por debajo de 10MK no hay apenas fusión.)
PPII: 25.67MeV. 10% Dominante entre los 14 y los 23 MK
PPIII: 19.20MeV. 0.001% Dominante a partir de los 23 MK
El núcleo del Sol tiene una temperatura media menor que 14 megakelvins por lo que es lógico que la rama mayoritaria sea la PPI.

600px

De todas las reacciones que se dan en el proceso la que tiene el tiempo característico más grande recibe el nombre de reacción limitante. Esto es porque el tiempo de la reacción más lenta es la que marca el tiempo de todo el proceso. En el caso de las cadenas PP la reacción limitante es la primera de todas, la combinación de los dos protones.
¹H + ¹H → ²H + e+ + ν (τ ~ 7·109 años)

Ciclo CNO ( M > 1.5 MSol ) Editar

Plantilla:AP

Las siglas del ciclo CNO hacen referencia a los elementos que intervienen en sus reacciones, el carbono, el nitrógeno y el oxígeno. Este conjunto de reacciones usa el carbono-12 como catalizador nuclear. Es decir que interviene en la reacción inicial para luego ser devuelto como producto final, pudiendo volver a utilizarse en un nuevo ciclo. En el diagrama se muestra un segundo canal de salida con una probabilidad de ocurrencia de una vez cada 10.000 reacciones, pero el nitrógeno-14 que da como subproducto puede, igualmente, ser reprocesado. La reacción más lenta es la del nitrógeno-14 más un protón que arroja un tiempo limitante de 3·108 años, un orden de magnitud inferior al de las cadenas PP. Esto hace que el C-12 del núcleo vaya pasando a N-14 hasta llegar a un equilibrio. El hecho que se utilice como catalizador al carbono hace que el ciclo CNO sea, hasta cierto punto, dependiente de la metalicidad de la estrella. A las primeras estrellas que se formaron en el universo les fue imposible fusionar el hidrógeno mediante este ciclo de reacciones por lo que, es de suponer, que tuvieran la masa que tuvieran todas ellas fusionarían su combustible mediante cadenas PP lo que haría que duraran algo más de tiempo que las supergigantes actuales.

Comparación entre las cadenas PP y el ciclo CNO Editar

En el ciclo CNO los neutrinos se llevan más energía que en las cadenas PP por lo que εPP > εCNO para cada núcleo de helio producido.

Cadenas PP: Tc < 2·107K || M < 1,5MSol || εPP~ ρT4 || τ ~ 7·109 años
Ciclo CNO: Tc > 2·107K || M > 1,5MSol || εCNO~ ρT17 || τ ~ 3·108 años

El ciclo CNO es mucho más dependiente de la temperatura que las cadenas PP por lo que a temperaturas elevadas (a partir de 2·107K) pasa a ser la reacción dominante y la que aporta el grueso de la energía de la estrella algo que sólo se da a partir de 1,5 masas solares. Debido a esa gran dependencia con la temperatura los núcleos CNO son pequeños y convectivos mientras que los PP son mayores y radiativos. El menor tiempo limitante de las estrellas CNO también hace que consuman en mucho menos tiempo su hidrógeno.

Como se ve en el diagrama adjunto el ciclo CNO empieza a producirse a temperaturas en torno a los 12,5 millones de grados pero no es hasta los 20 millones cuando, realmente, se hace dominante. En el Sol dominan totalmente las cadenas PP siendo así que el 98,5% de la energía generada es a través de dicho mecanismo mientras que solo el 1,5% restante se produce gracias al ciclo CNO. Pero con que nuestra estrella fuera un 20% más masiva la energía ya provendría, mayoritariamente, de las reacciones CNO. Obsérvese que en el gráfico adjunto la escala vertical, que representa la energía, es logarítmica.

Plantilla:VT

Enlaces externosEditar

fi:Pääsarja fr:Diagramme de Hertzsprung-Russell#S.C3.A9quence_principale gl:Secuencia principal hr:Glavni niz id:Deret utama it:Sequenza principale ja:主系列星 ko:주계열성 lt:Pagrindinė seka lv:Galvenās secības zvaigzne nl:Hoofdreeks nn:Hovudserien no:Hovedserienru:Главная последовательность sk:Hlavná postupnosť sv:Huvudserien zh:主序星

¡Interferencia de bloqueo de anuncios detectada!


Wikia es un sitio libre de uso que hace dinero de la publicidad. Contamos con una experiencia modificada para los visitantes que utilizan el bloqueo de anuncios

Wikia no es accesible si se han hecho aún más modificaciones. Si se quita el bloqueador de anuncios personalizado, la página cargará como se esperaba.